| 提交詢價信息 |
| 發布緊急求購 |
價格:電議
所在地:上海
型號:0
更新時間:2012-05-14
瀏覽次數:2416
公司地址:中國 上海市 上海市松江九亭大街403弄14號303室。分公司:重慶市江北區建北一支路八號新上海大廈B棟28-5 023-86069890
![]()
秦先才(先生)
上海儀加儀公司是一家專業為客戶提供專業儀器服務的科工貿公司。我們與世界上許多知名品牌建立了良好的合作關系,把優良的產品推薦給廣大的用戶,為您的產品質量提供一份更可靠的保證。
我公司生產直流電源,交流穩壓電源,交流變頻電源,質量穩定可靠。還提供特殊規格要求的定制品。
為了更好地服務于廣大客戶,我公司配有一支技術精湛的技術人員,能為客戶提供各種儀器設備的維修服務。
為廣大用戶提供最好的儀器和服務,是我公司的最大宗旨。
| 品牌 | 0 | 型號 | 0 |
| 測量范圍 | 350(Hz) | 準確度 | 0 |
| 輸入信號幅度 | 0(V) | 適用范圍 | 0 |


粗糙度儀原理
針描法針描法又稱觸針法。當觸針直接在工件被測表面上輕輕劃過時,由于被測表面輪廓峰谷起伏, 觸針將在垂直于被測輪廓表面方向上產生上下移動,把這種移通過電子裝置把信號加以放大, 然后通過指零表或其它輸出裝置將有關粗糙度的數據或圖形輸出來
工作原理采用針描法原理的表面粗糙度測量儀由傳感器、驅動器、指零表、記錄器和電感傳感器是輪 廓儀的主要部件之一,其工作原理見圖2,在傳感器測桿的一端裝有金剛石觸針,觸針尖 端曲率半徑r很小,測量時將觸針搭在工件上,與被測表面垂直接觸,利用驅動器以一定的 速度拖動傳感器。由于被測表面輪廓峰谷起伏,觸狀在被測表面滑行時,將產生上下移動。 此運動經支點使磁芯同步地上下運動,從而使包圍在磁芯外面的兩個差動電感線圈的電感量發生變化。 圖3為儀器的工作原理主框圖。傳感器的線圈與測量線路是直接接入平衡電橋的,線圈電感量的變化使電橋失 去平衡,于是就輸出一個和觸針上下的位移量成正比的信號,經電子裝置將這一微弱電量的變化放大、 相敏檢波后,獲得能表示觸針位移量大小和方向的信號。此后,將信號分成三路:一路加到指零表上, 以表示觸針的位置,一路輸至直流功率放大器,放大后推動記錄器進行記錄;另一路經濾波和平均表放大 器放大之后,進入積分計算器,進行積分計算,即可由指示表直接讀出表面粗糙度Ra值。 圖3 傳統表面粗糙度測量儀工作原理框圖指零表的作用反映鐵芯在差動電感線圈中所處的位置。當鐵芯處于差動電感線圈的中間位置時,指零表指針指示出零位,即保證處于電感變化的線性范圍之內。所以,在測量之前,必須調整指零表,使其處于零位。噪聲濾波的目的在于剔除一些干擾信號,如電氣元件的噪聲所引起的虛假信號。大量的測試表明,高于400Hz的信號即不是被測表面粗糙度所引的信號,必須從總信號中加以剔除。所以噪聲濾波器是一種低通(低頻能通過)濾波器,它使400Hz以下的低
表面粗擦度輪廓頻信號順利通過,而將400Hz以上的高頻信號迅速衰減,從而達到濾波的目的。波度濾波的目的則是用以濾掉距大于取樣長度的波度,因此它是一個高通(高頻能通過)濾波器,使表面粗糙度所引起的高頻(相對于波度引起的低頻而言)信號能自由通過。經過噪聲濾波和波度濾波以后,剩下來的就是與被測表面粗糙度成比例的信號,再經平均表放大器后,所輸出的電流I與被測表面輪廓各點偏離中線的高度y的值成正比,然后經積分器完成的積計算,得出Ra值,由指零表顯示出來。這種儀器適用于測定0.02-10μm的Ra值,其中有少數型號的儀器還可測定更小的參數值,儀器配有各種附件,以適應平面、內外圓柱面、圓錐面、球面、曲面、以及小孔、溝槽等形狀的工件表面測量。測量迅速方便,測值精度高。 傳統表面粗糙度測量儀存在以下幾個方面的不足: (1)測量參數較少,一般僅能測出Ra、Rz、Ry等少量參數; (2)測量精度較低,測量范圍較小,Ra值的范圍一般為0.02-10μm左右; (3)測量方式不靈活,例如:評定長度的選取,濾波器的選擇等; (4)測量結果的輸出不直觀。造成上述幾個方面不足的主要原因是:系統的可靠性不高,模擬信號的誤差較大且不便于處理等。
編輯本段表面粗糙度儀發展歷史傳統表面粗糙度測量儀的改進方案為了克服傳統表面粗糙度測量儀的不足,應該采用計算機系統對其進行改進。例如,英國蘭克機械有限公司制造的“泰呂塞夫(TALYSURF)”10型和我國哈爾濱量具刃具廠制造的2205型表面粗糙度測量儀就采用了計算機系統,使其性能較之傳統表面粗糙度測量儀有大的提高。其基本原理如圖4所示,從相敏整流輸出的模擬信號,經過放大及電平轉換之后進入數據采集系統,計算機自動地將其采集的數據進行數字濾波和計算,得到
各種加工表面得到的表面光潔度測量結果,測量結果及輪廓圖形在顯示器顯示或打印輸出。 圖4 改進后的表面粗糙度測量儀工作原理框圖要采用計算機系統對傳統的表面粗糙度測量儀進行改進,就要編制相應的計算機軟件,采用比較直觀的菜單形式。可以按如圖5所示的菜單使用流程圖編制軟件: 圖5 菜單使用流程框圖
改進后的表面粗糙度測量儀的功能及使用效果由于采用計算機系統,將模擬信號轉換為數字信號進行靈活的處理,顯著地提高了系統的可靠性,所以既大大增加了測量參數的數量,又提高了測量精度。例如:哈爾濱量具刃具廠制造的2205型表面粗糙度測量儀的測量參數多達二十六個,測量范圍為0.001~50μm,可任選1~5倍的取樣長度作為評定長度,測量結果及圖形在顯示器、打印機或繪圖儀上非常直觀地輸出來。它還采用了較為先選的可選擇的數字濾波器,它與模擬濾波器相比其特性更為準確,且不會有元器件參數誤差帶來的影響。另一方面,若在表面粗糙度測量儀測量實驗的教學過程中引入改進后的表面粗糙度測量儀,就實驗的直觀教學功能而言,也很有意義。改進后的電動輸廓儀,通過計算機軟件與硬件的結合(尤其是軟件)大大加強了實驗過程的直觀性,這體現在以下幾個方面: (1)整個實驗過程非常直觀地通過軟件的各級菜單進行控制。操作簡單、一目了然。 (2)輸入與顯示同步,即在測量進行過程的同時,觸針在被測表面上滑行的軌跡動態地顯示在計算機屏幕上。 (3)測量結果及相關圖形能非常直觀地、準確地輸出在顯示器、打印機或繪圖儀上。很顯然,以上這些直觀的教
粗擦度儀學效果是其它傳統的表面粗糙度測量實驗方法所不具備的。它在得到正確的測量結果的同時,還充分運用了直觀教學的原理,幫助學生加深對表面粗糙度的概念及其各種參數的直觀理解。
結語(1)傳統的表面粗糙度測量儀由傳感器、驅動器、指零表、記錄器和工作臺等主要部件組成,從輸入到輸出全過程均為模擬信號。而在傳統的表面粗糙度測量儀的基礎上,采用計算機系統對其進行改進后,通過模-數轉換將模擬量轉換為數字量送入計算機進行處理,使得儀器在測量參數的數量、測量精度、測量方式的靈活性、測量結果輸出的直觀性等方面有了大的提高。 (2)從前面的分析知,整個改進方案并不復雜,因此對于目前仍廣泛使用的傳統的表面粗糙度測量儀的改進具有一定的意義。 (3)隨著電子技術的進步,某些型號的表面粗糙度測量儀還可將表面粗糙度的凹凸不平作三維處理,測量時在相互平行的多個截面上進行,通過模-數變換器,將模擬量轉換為數字量,送入計算機進行數據處理,記錄其三維放大圖形,并求出等高線圖形,從而更加合理的評定被測面的表面粗糙度。粗糙度∶以前一般叫表面光潔度,是用來評定工件表面質量的專業術語,早一般用對比樣板來評定工件表面粗糙度,從▲1到▲14一共分為14個等級,隨著科技的發展使用者對工件表面質量要求也越來越高,原來的檢測手段已經不能滿足我們的需求,這也就加快了表面粗糙度儀的誕生。粗糙度儀是檢測工件表面粗糙度的數字化電子儀器,由于準確度高、穩定性好、便于操作等優點迅速普及開來。
編輯本段粗糙度儀分類粗糙度儀又叫表面粗糙度儀、表面光潔度儀、表面粗糙度檢測儀、粗糙度測量儀、粗糙度計、粗糙度測試儀等多種名稱,國外先研發生產后來才引進,目前市場上粗糙度儀品牌主要有:英國泰勒粗糙度儀、德國馬爾粗糙度儀、德國霍梅爾表面粗糙度儀、日本三豐粗糙度儀、東京粗
表面粗擦度輪廓中線糙度、瑞士泰薩粗糙度儀、英國易高粗糙度這些都是國外生產廠商品牌;生產廠家品牌主要有:北京時代粗糙度儀、哈量粗糙度儀、寧波聯合、上海泰明、304、威爾遜、蘭泰等。其中時代集團生產的粗糙度儀(時代粗糙度儀)在占有80%左右的市場份額。粗糙度儀從測量原理上主要分為兩大類:接觸式和非接觸式,接觸式粗糙度儀主要是主機和傳感器的形式,非接觸式粗糙度儀主要是光學原理例如激光表面粗糙度儀。從測量使用的方便性上說又可分為:珍式表面粗糙度儀(代表性產品主要有:時代TR100、TR101、TR110、TR150珍式表面粗糙度儀和現已停產的英國泰勒DUO珍式表面粗糙度儀)、手持式粗糙度儀(代表性產品主要有TR200/220手持式粗糙度儀、泰勒25粗糙度儀、M1/M2粗糙度儀等品牌型號,不一一列舉)、便攜式粗糙度儀(代表性產品主要有TR240便攜式粗糙度儀和TR300粗糙度形狀測量儀等)、臺式粗糙度儀(品牌型號較多一一列舉,有些手持式粗糙度儀和便攜式粗糙度儀配上相應的測量平臺即可以當臺式粗糙度儀使用)。粗糙度儀從功能又可劃分為:表面粗糙度儀、粗糙度形狀測量儀(TR300粗糙度形狀測量儀是界于表面粗糙度儀和表面粗糙度輪廓儀之間的一款測量表面粗糙度的儀器,也可說是微觀表面粗糙度輪廓儀)和表面粗糙度輪廓儀(代表性產品主要有英國泰勒表面粗糙度輪廓儀、德國馬爾粗糙度輪廓儀、德國霍梅爾表面粗糙度輪廓儀、日本三豐表面粗糙度輪廓儀)。
編輯本段表面粗糙度的標準主要術語及定義1.表面粗糙度取樣長度L 取樣長度是用于判斷和測量表面粗糙度時所規定的一段基準線長度,它在輪廓總的走向上取樣。 2.表面粗糙度評定長度Ln 由于加工表面有著不同程度的不均勻性,為了充分合理地反映某一表面的粗糙度特性, 規定在評定時所必須的一段表面長度,它包括一個或數個取樣長度,稱為評定長度Ln 3.表面粗糙度輪廓中線m 輪廓中線m是評定表面粗糙度數值的基準線。評定參數及數值 國
粗擦度RA計算公式2家規定表面粗糙 度的參數由高度參數、間距參數和綜合參數組成。 4.表面粗糙度高度參數 (1)輪廓算術平均偏差Ra 在取樣長度l內,輪廓偏距值的算術平均值。 (2)微觀不平度十點高度Rz 在取樣長度內zui大的輪廓峰高的平均值與五個zui大的輪廓谷深的平均值之和。 (3)輪廓zui大高度Ry 在取樣長度內,輪廓峰頂線和輪廓谷底線之間的距離, 表面粗糙度間距參數共有兩個: (4)輪廓單峰平均間距S 兩相鄰輪廓單峰的zui高點在中線上的投影長度Si,稱為輪廓單峰間距,在取樣長度內, 輪廓單峰間距的平均值,就是輪廓單峰平均間距。 (5)輪廓微觀不平度的平均間距Sm 含有一個輪廓峰和相鄰輪廓谷的一段中線長度Smi,稱輪廓微觀不平間距,表面粗糙度綜合參數 (6)輪廓支承長度率tp 輪廓支承長度率就是輪廓支承長度np與取樣長度l之比。
編輯本段表面粗糙度理論與標準的發展表面粗糙度標準的提出和發展與工業生產技術的發展密切相關,它經歷了由定性評定到定量評定兩個階段。 表面粗糙度對機器零件表面性能的影響從1918年開始先受到注意,在飛機和飛機發動機設計中,由于要 求用少材料達到zui大的強度,人們開始對加工表面的刀痕和刮痕對疲勞強度的影響加以研究。但由于測 量困難,當時沒有定量數值上的評定要求,只是根據目測感覺來確定。在20世紀20~30年代,上很多 工業廣泛采用三角符號(??)的組合來表示不同精度的加工表面。 : 為研究表面粗糙度對零件性能的影響和度量表面微觀不平度的需要,從20年代末到30年代,德國、美國 和英國等國的一些設計制作了輪廓記錄儀、輪廓儀,同時也產生出了光切式顯微鏡和干涉顯微鏡等用 光學方法來測量表面微觀不平度的儀器,給從數值上定量評定表面粗糙度創造了條件。從30年代起,已對表 面粗糙度定量評定參數進行了研究,如美國的Abbott就提出了用距表面輪廓峰頂的深度和支承長度率曲線來 表征表面粗糙度。1936年
粗擦度參數RY定義出版了Schmaltz論述表面粗糙度的專著,對表面粗糙度的評定參數和數值的標準化 提出了建議。但粗糙度評定參數及其數值的使用,真正成為一個被廣泛接受的標準還是從40年代各國相應的 標準發布以后開始的。 先是美國在1940年發布了ASA B46.1標準,之后又經過幾次修訂,成為現行標準ANSI/ASME B46. 1-1988《表面結構表面粗糙度、表面波紋度和加工紋理》,該標準采用中線制,并將Ra作為主參數;接著前蘇 聯在1945年發布了GOCT2789-1945《表面光潔度、表面微觀幾何形狀、分級和表示法》標準,而后經過了3 次修訂成為GOCT2789-1973《表面粗糙度參數和特征》,該標準也采用中線制,并規定了包括輪廓均方根偏差 即現在的Rq)在內的6個評定參數及其相應的參數值。另外,其它工業發達的標準大多是在50年代制定的, 如聯邦德國在1952年2月發布了DIN4760和DIN4762有關表面粗糙度的評定參數和術語等方面的標準等。
編輯本段表面粗糙度標準中的基本參數定義隨著工業的發展和對外開放與技術合作的需要,我國對表面粗糙度的研究和標準化愈來愈被科技和工業界所重視, 為迅速改變表面粗糙度方面的術語和概念不統一的局面,并達到與統一的作用,我國等效采用標準 化組織(ISO)有關的標準制訂了GB3505-1983《表面粗糙度術語表面及其參數》。GB3505專門對有關表面粗糙 度的表面及其參數等術語作了規定,其中有三個部分共27個參數術語: a. 與微觀不平度高度特性有關的表面粗糙度參數術語。其中定義的常用術語為:輪廓算術平均偏差Ra、 輪廓均方根偏差Rq、輪廓zui大高度Ry和微觀不平度十點高度Rz等11個參數。 b. 與微觀不平度間距特性有關的表面粗糙度參數術語。其中有輪廓微觀不平度的平均間距Sm、 輪廓峰密度D、輪廓均方根波長lq以及輪廓的單峰平均間距S等共9個參數。 c. 與微觀不平度形狀特性有關的表面粗糙度參數術語。這其中有輪廓偏斜度Sk、 輪廓均方根斜率Dq和輪廓支承長度率tp等共5 個 3.加工表面性能評價的內容及其迫切性 表面粗糙度參數這一概念開始提出時就是為了研究零件表面和其性能之間的關系,實現對表面形貌準確 的量化的描述。隨著加工精度要求的提高以及對具有特殊功能零件表面的加工需求, 提出了表面粗糙度 評價參數的定量計算方法和數值規定,同時這也推動了標準及標準的形成和發展。 4.表面粗糙度理論的新進展 表面形貌評定的核心在于特征信號的無失真提取和對使用性能的量化評定,外學者在這一方面 做了大量工作,提出了許多分離與重構方法。隨著當今微機處理技術、集成電路技術、機電一體化 技術等的發展,出現了用分形法、Motif法、功能參數集法、時間序列技術分析法、zui小二乘多項式 擬合法、濾波法等各種評定理論與方法,取得了顯著進展,下面對相對而言比較成熟的分形法、 Motif法、特定功能參數集法進行介紹。 表面粗糙度儀(光潔度)的標準主要術語及定義 本資料給出的參數符合GB/T3505-2000《產品幾何技術規范表面結構 輪廓法 表面結構的述語、定義及參數》、符合GB/T6062-2002《產品幾何量技術規范(GPS)表面結構 輪廓法接觸(觸針)式儀器的標稱特性》。
編輯本段表面粗糙度關鍵技術術語(1)表面粗糙度: 取樣長度L 取樣長度是用于判斷和測量表面粗糙度時所規定的一段基準線長度,它在輪廓總的走向上取樣。 (2)表面粗糙度: 評定長度Ln 由于加工表面有著不同程度的不均勻性,為了充分合理地反映某一表面的粗糙度特性,規定在評定時所必須的一段表面長度,它包括一個或數個取樣長度,稱為評定長度Ln。 (3)表面粗糙度: 輪廓中線(也有叫曲線平均線)M 輪廓中線M是評定表面粗糙度數值的基準線。
編輯本段粗擦度評定參數及數值規定表面粗糙度的參數由高度參數、間距參數和綜合參數組成。 表面粗糙度高度參數共有三個: (1)輪廓算術平均偏差Ra : 在取樣長度L內,輪廓偏距值的算術平均值。 (2)微觀不平度十點高度Rz 在取樣長度L內zui大的輪廓峰高的平均值與五個zui大的輪廓谷深的平均值之和。 (3)輪廓zui大高度Ry 在取樣長度內,輪廓峰頂線和輪廓谷底線之間的距離。 表面粗糙度間距參數共有兩個: (4)輪廓單峰平均間距S 兩相鄰輪廓單峰的zui高點在中線上的投影長度Si,稱為輪廓單峰間距,在取樣長度L內,輪廓單峰間距的平均值,就是輪廓單峰平均間距。 (5)輪廓微觀不平度的平均間距Sm 含有一個輪廓峰和相鄰輪廓谷的一段中線長度Smi,稱輪廓微觀不平間距。 表面粗糙度綜合參數: (6)輪廓支承長度率tp 輪廓支承長度率就是輪廓支承長度np與取樣長度L之比。粗糙度儀原理
針描法又稱觸針法。當觸針直接在工件被測表面上輕輕劃過時,由于被測表面輪廓峰谷起伏, 觸針將在垂直于被測輪廓表面方向上產生上下移動,把這種移通過電子裝置把信號加以放大, 然后通過指零表或其它輸出裝置將有關粗糙度的數據或圖形輸出來
采用針描法原理的表面粗糙度測量儀由傳感器、驅動器、指零表、記錄器和電感傳感器是輪 廓儀的主要部件之一,其工作原理見圖2,在傳感器測桿的一端裝有金剛石觸針,觸針尖 端曲率半徑r很小,測量時將觸針搭在工件上,與被測表面垂直接觸,利用驅動器以一定的 速度拖動傳感器。由于被測表面輪廓峰谷起伏,觸狀在被測表面滑行時,將產生上下移動。 此運動經支點使磁芯同步地上下運動,從而使包圍在磁芯外面的兩個差動電感線圈的電感量發生變化。 圖3為儀器的工作原理主框圖。傳感器的線圈與測量線路是直接接入平衡電橋的,線圈電感量的變化使電橋失 去平衡,于是就輸出一個和觸針上下的位移量成正比的信號,經電子裝置將這一微弱電量的變化放大、 相敏檢波后,獲得能表示觸針位移量大小和方向的信號。此后,將信號分成三路:一路加到指零表上, 以表示觸針的位置,一路輸至直流功率放大器,放大后推動記錄器進行記錄;另一路經濾波和平均表放大 器放大之后,進入積分計算器,進行積分計算,即可由指示表直接讀出表面粗糙度Ra值。
圖3 傳統表面粗糙度測量儀工作原理框圖指零表的作用反映鐵芯在差動電感線圈中所處的位置。當鐵芯處于差動電感線圈的中間位置時,指零表指針指示出零位,即保證處于電感變化的線性范圍之內。所以,在測量之前,必須調整指零表,使其處于零位。噪聲濾波的目的在于剔除一些干擾信號,如電氣元件的噪聲所引起的虛假信號。大量的測試表明,高于400Hz的信號即不是被測表面粗糙度所引的信號,必須從總信號中加以剔除。所以噪聲濾波器是一種低通(低頻能通過)濾波器,它使400Hz以下的低

表面粗擦度輪廓
頻信號順利通過,而將400Hz以上的高頻信號迅速衰減,從而達到濾波的目的。波度濾波的目的則是用以濾掉距大于取樣長度的波度,因此它是一個高通(高頻能通過)濾波器,使表面粗糙度所引起的高頻(相對于波度引起的低頻而言)信號能自由通過。經過噪聲濾波和波度濾波以后,剩下來的就是與被測表面粗糙度成比例的信號,再經平均表放大器后,所輸出的電流I與被測表面輪廓各點偏離中線的高度y的值成正比,然后經積分器完成的積計算,得出Ra值,由指零表顯示出來。這種儀器適用于測定0.02-10μm的Ra值,其中有少數型號的儀器還可測定更小的參數值,儀器配有各種附件,以適應平面、內外圓柱面、圓錐面、球面、曲面、以及小孔、溝槽等形狀的工件表面測量。測量迅速方便,測值精度高。
傳統表面粗糙度測量儀存在以下幾個方面的不足:
(1)測量參數較少,一般僅能測出Ra、Rz、Ry等少量參數; (2)測量精度較低,測量范圍較小,Ra值的范圍一般為0.02-10μm左右; (3)測量方式不靈活,例如:評定長度的選取,濾波器的選擇等; (4)測量結果的輸出不直觀。造成上述幾個方面不足的主要原因是:系統的可靠性不高,模擬信號的誤差較大且不便于處理等。
為了克服傳統表面粗糙度測量儀的不足,應該采用計算機系統對其進行改進。例如,英國蘭克機械有限公司制造的“泰呂塞夫(TALYSURF)”10型和我國哈爾濱量具刃具廠制造的2205型表面粗糙度測量儀就采用了計算機系統,使其性能較之傳統表面粗糙度測量儀有大的提高。其基本原理如圖4所示,從相敏整流輸出的模擬信號,經過放大及電平轉換之后進入數據采集系統,計算機自動地將其采集的數據進行數字濾波和計算,得到

各種加工表面得到的表面光潔度
測量結果,測量結果及輪廓圖形在顯示器顯示或打印輸出。 圖4 改進后的表面粗糙度測量儀工作原理框圖要采用計算機系統對傳統的表面粗糙度測量儀進行改進,就要編制相應的計算機軟件,采用比較直觀的菜單形式。可以按如圖5所示的菜單使用流程圖編制軟件:
圖5 菜單使用流程框圖
由于采用計算機系統,將模擬信號轉換為數字信號進行靈活的處理,顯著地提高了系統的可靠性,所以既大大增加了測量參數的數量,又提高了測量精度。例如:哈爾濱量具刃具廠制造的2205型表面粗糙度測量儀的測量參數多達二十六個,測量范圍為0.001~50μm,可任選1~5倍的取樣長度作為評定長度,測量結果及圖形在顯示器、打印機或繪圖儀上非常直觀地輸出來。它還采用了較為先選的可選擇的數字濾波器,它與模擬濾波器相比其特性更為準確,且不會有元器件參數誤差帶來的影響。另一方面,若在表面粗糙度測量儀測量實驗的教學過程中引入改進后的表面粗糙度測量儀,就實驗的直觀教學功能而言,也很有意義。改進后的電動輸廓儀,通過計算機軟件與硬件的結合(尤其是軟件)大大加強了實驗過程的直觀性,這體現在以下幾個方面:
(1)整個實驗過程非常直觀地通過軟件的各級菜單進行控制。操作簡單、一目了然。 (2)輸入與顯示同步,即在測量進行過程的同時,觸針在被測表面上滑行的軌跡動態地顯示在計算機屏幕上。 (3)測量結果及相關圖形能非常直觀地、準確地輸出在顯示器、打印機或繪圖儀上。很顯然,以上這些直觀的教

粗擦度儀
學效果是其它傳統的表面粗糙度測量實驗方法所不具備的。它在得到正確的測量結果的同時,還充分運用了直觀教學的原理,幫助學生加深對表面粗糙度的概念及其各種參數的直觀理解。
(1)傳統的表面粗糙度測量儀由傳感器、驅動器、指零表、記錄器和工作臺等主要部件組成,從輸入到輸出全過程均為模擬信號。而在傳統的表面粗糙度測量儀的基礎上,采用計算機系統對其進行改進后,通過模-數轉換將模擬量轉換為數字量送入計算機進行處理,使得儀器在測量參數的數量、測量精度、測量方式的靈活性、測量結果輸出的直觀性等方面有了大的提高。 (2)從前面的分析知,整個改進方案并不復雜,因此對于目前仍廣泛使用的傳統的表面粗糙度測量儀的改進具有一定的意義。 (3)隨著電子技術的進步,某些型號的表面粗糙度測量儀還可將表面粗糙度的凹凸不平作三維處理,測量時在相互平行的多個截面上進行,通過模-數變換器,將模擬量轉換為數字量,送入計算機進行數據處理,記錄其三維放大圖形,并求出等高線圖形,從而更加合理的評定被測面的表面粗糙度。粗糙度∶以前一般叫表面光潔度,是用來評定工件表面質量的專業術語,早一般用對比樣板來評定工件表面粗糙度,從▲1到▲14一共分為14個等級,隨著科技的發展使用者對工件表面質量要求也越來越高,原來的檢測手段已經不能滿足我們的需求,這也就加快了表面粗糙度儀的誕生。粗糙度儀是檢測工件表面粗糙度的數字化電子儀器,由于準確度高、穩定性好、便于操作等優點迅速普及開來。
粗糙度儀又叫表面粗糙度儀、表面光潔度儀、表面粗糙度檢測儀、粗糙度測量儀、粗糙度計、粗糙度測試儀等多種名稱,國外先研發生產后來才引進,目前市場上粗糙度儀品牌主要有:英國泰勒粗糙度儀、德國馬爾粗糙度儀、德國霍梅爾表面粗糙度儀、日本三豐粗糙度儀、東京粗

表面粗擦度輪廓中線
糙度、瑞士泰薩粗糙度儀、英國易高粗糙度這些都是國外生產廠商品牌;生產廠家品牌主要有:北京時代粗糙度儀、哈量粗糙度儀、寧波聯合、上海泰明、304、威爾遜、蘭泰等。其中時代集團生產的粗糙度儀(時代粗糙度儀)在占有80%左右的市場份額。粗糙度儀從測量原理上主要分為兩大類:接觸式和非接觸式,接觸式粗糙度儀主要是主機和傳感器的形式,非接觸式粗糙度儀主要是光學原理例如激光表面粗糙度儀。從測量使用的方便性上說又可分為:珍式表面粗糙度儀(代表性產品主要有:時代TR100、TR101、TR110、TR150珍式表面粗糙度儀和現已停產的英國泰勒DUO珍式表面粗糙度儀)、手持式粗糙度儀(代表性產品主要有TR200/220手持式粗糙度儀、泰勒25粗糙度儀、M1/M2粗糙度儀等品牌型號,不一一列舉)、便攜式粗糙度儀(代表性產品主要有TR240便攜式粗糙度儀和TR300粗糙度形狀測量儀等)、臺式粗糙度儀(品牌型號較多一一列舉,有些手持式粗糙度儀和便攜式粗糙度儀配上相應的測量平臺即可以當臺式粗糙度儀使用)。粗糙度儀從功能又可劃分為:表面粗糙度儀、粗糙度形狀測量儀(TR300粗糙度形狀測量儀是界于表面粗糙度儀和表面粗糙度輪廓儀之間的一款測量表面粗糙度的儀器,也可說是微觀表面粗糙度輪廓儀)和表面粗糙度輪廓儀(代表性產品主要有英國泰勒表面粗糙度輪廓儀、德國馬爾粗糙度輪廓儀、德國霍梅爾表面粗糙度輪廓儀、日本三豐表面粗糙度輪廓儀)。
1.表面粗糙度取樣長度L 取樣長度是用于判斷和測量表面粗糙度時所規定的一段基準線長度,它在輪廓總的走向上取樣。
2.表面粗糙度評定長度Ln 由于加工表面有著不同程度的不均勻性,為了充分合理地反映某一表面的粗糙度特性, 規定在評定時所必須的一段表面長度,它包括一個或數個取樣長度,稱為評定長度Ln
3.表面粗糙度輪廓中線m 輪廓中線m是評定表面粗糙度數值的基準線。評定參數及數值 國

粗擦度RA計算公式2
家規定表面粗糙 度的參數由高度參數、間距參數和綜合參數組成。
4.表面粗糙度高度參數 (1)輪廓算術平均偏差Ra 在取樣長度l內,輪廓偏距值的算術平均值。 (2)微觀不平度十點高度Rz 在取樣長度內zui大的輪廓峰高的平均值與五個zui大的輪廓谷深的平均值之和。 (3)輪廓zui大高度Ry 在取樣長度內,輪廓峰頂線和輪廓谷底線之間的距離, 表面粗糙度間距參數共有兩個: (4)輪廓單峰平均間距S 兩相鄰輪廓單峰的zui高點在中線上的投影長度Si,稱為輪廓單峰間距,在取樣長度內, 輪廓單峰間距的平均值,就是輪廓單峰平均間距。 (5)輪廓微觀不平度的平均間距Sm 含有一個輪廓峰和相鄰輪廓谷的一段中線長度Smi,稱輪廓微觀不平間距,表面粗糙度綜合參數 (6)輪廓支承長度率tp 輪廓支承長度率就是輪廓支承長度np與取樣長度l之比。
表面粗糙度標準的提出和發展與工業生產技術的發展密切相關,它經歷了由定性評定到定量評定兩個階段。 表面粗糙度對機器零件表面性能的影響從1918年開始先受到注意,在飛機和飛機發動機設計中,由于要 求用少材料達到zui大的強度,人們開始對加工表面的刀痕和刮痕對疲勞強度的影響加以研究。但由于測 量困難,當時沒有定量數值上的評定要求,只是根據目測感覺來確定。在20世紀20~30年代,上很多 工業廣泛采用三角符號(??)的組合來表示不同精度的加工表面。
: 為研究表面粗糙度對零件性能的影響和度量表面微觀不平度的需要,從20年代末到30年代,德國、美國 和英國等國的一些設計制作了輪廓記錄儀、輪廓儀,同時也產生出了光切式顯微鏡和干涉顯微鏡等用 光學方法來測量表面微觀不平度的儀器,給從數值上定量評定表面粗糙度創造了條件。從30年代起,已對表 面粗糙度定量評定參數進行了研究,如美國的Abbott就提出了用距表面輪廓峰頂的深度和支承長度率曲線來 表征表面粗糙度。1936年

粗擦度參數RY定義
出版了Schmaltz論述表面粗糙度的專著,對表面粗糙度的評定參數和數值的標準化 提出了建議。但粗糙度評定參數及其數值的使用,真正成為一個被廣泛接受的標準還是從40年代各國相應的 標準發布以后開始的。
先是美國在1940年發布了ASA B46.1標準,之后又經過幾次修訂,成為現行標準ANSI/ASME B46. 1-1988《表面結構表面粗糙度、表面波紋度和加工紋理》,該標準采用中線制,并將Ra作為主參數;接著前蘇 聯在1945年發布了GOCT2789-1945《表面光潔度、表面微觀幾何形狀、分級和表示法》標準,而后經過了3 次修訂成為GOCT2789-1973《表面粗糙度參數和特征》,該標準也采用中線制,并規定了包括輪廓均方根偏差 即現在的Rq)在內的6個評定參數及其相應的參數值。另外,其它工業發達的標準大多是在50年代制定的, 如聯邦德國在1952年2月發布了DIN4760和DIN4762有關表面粗糙度的評定參數和術語等方面的標準等。
隨著工業的發展和對外開放與技術合作的需要,我國對表面粗糙度的研究和標準化愈來愈被科技和工業界所重視, 為迅速改變表面粗糙度方面的術語和概念不統一的局面,并達到與統一的作用,我國等效采用標準 化組織(ISO)有關的標準制訂了GB3505-1983《表面粗糙度術語表面及其參數》。GB3505專門對有關表面粗糙 度的表面及其參數等術語作了規定,其中有三個部分共27個參數術語: a. 與微觀不平度高度特性有關的表面粗糙度參數術語。其中定義的常用術語為:輪廓算術平均偏差Ra、 輪廓均方根偏差Rq、輪廓zui大高度Ry和微觀不平度十點高度Rz等11個參數。
b. 與微觀不平度間距特性有關的表面粗糙度參數術語。其中有輪廓微觀不平度的平均間距Sm、 輪廓峰密度D、輪廓均方根波長lq以及輪廓的單峰平均間距S等共9個參數。
c. 與微觀不平度形狀特性有關的表面粗糙度參數術語。這其中有輪廓偏斜度Sk、 輪廓均方根斜率Dq和輪廓支承長度率tp等共5 個
3.加工表面性能評價的內容及其迫切性
表面粗糙度參數這一概念開始提出時就是為了研究零件表面和其性能之間的關系,實現對表面形貌準確 的量化的描述。隨著加工精度要求的提高以及對具有特殊功能零件表面的加工需求, 提出了表面粗糙度 評價參數的定量計算方法和數值規定,同時這也推動了標準及標準的形成和發展。 4.表面粗糙度理論的新進展 表面形貌評定的核心在于特征信號的無失真提取和對使用性能的量化評定,外學者在這一方面 做了大量工作,提出了許多分離與重構方法。隨著當今微機處理技術、集成電路技術、機電一體化 技術等的發展,出現了用分形法、Motif法、功能參數集法、時間序列技術分析法、zui小二乘多項式 擬合法、濾波法等各種評定理論與方法,取得了顯著進展,下面對相對而言比較成熟的分形法、 Motif法、特定功能參數集法進行介紹。 表面粗糙度儀(光潔度)的標準主要術語及定義
本資料給出的參數符合GB/T3505-2000《產品幾何技術規范表面結構 輪廓法 表面結構的述語、定義及參數》、符合GB/T6062-2002《產品幾何量技術規范(GPS)表面結構 輪廓法接觸(觸針)式儀器的標稱特性》。
(1)表面粗糙度: 取樣長度L
取樣長度是用于判斷和測量表面粗糙度時所規定的一段基準線長度,它在輪廓總的走向上取樣。
(2)表面粗糙度: 評定長度Ln
由于加工表面有著不同程度的不均勻性,為了充分合理地反映某一表面的粗糙度特性,規定在評定時所必須的一段表面長度,它包括一個或數個取樣長度,稱為評定長度Ln。
(3)表面粗糙度: 輪廓中線(也有叫曲線平均線)M
輪廓中線M是評定表面粗糙度數值的基準線。
規定表面粗糙度的參數由高度參數、間距參數和綜合參數組成。
表面粗糙度高度參數共有三個:
(1)輪廓算術平均偏差Ra :
在取樣長度L內,輪廓偏距值的算術平均值。
(2)微觀不平度十點高度Rz
在取樣長度L內zui大的輪廓峰高的平均值與五個zui大的輪廓谷深的平均值之和。
(3)輪廓zui大高度Ry
在取樣長度內,輪廓峰頂線和輪廓谷底線之間的距離。
表面粗糙度間距參數共有兩個:
(4)輪廓單峰平均間距S
兩相鄰輪廓單峰的zui高點在中線上的投影長度Si,稱為輪廓單峰間距,在取樣長度L內,輪廓單峰間距的平均值,就是輪廓單峰平均間距。
(5)輪廓微觀不平度的平均間距Sm
含有一個輪廓峰和相鄰輪廓谷的一段中線長度Smi,稱輪廓微觀不平間距。
表面粗糙度綜合參數:
(6)輪廓支承長度率tp
輪廓支承長度率就是輪廓支承長度np與取樣長度L之比。
免責聲明:以上所展示的[0 粗糙度儀]信息由會員[上海儀加儀電子科技有限公司]自行提供,內容的真實性、準確性和合法性由發布會員負責。